Center for Water and Sanitation (CWAS), CRDF, CEPT University in partnership with Global Sanitation Centre of Excellence (GSCOE), TECHIN, IIT Palakkad, and Bill & Melinda Gates Foundation

Details of ISO 31800: 2020 – Faecal sludge treatment units 04th April 2024 17:00 to 18:30 (IST)

Webinar 4

Details of ISO 31800: 2020 – Faecal sludge treatment units April 04th, 2024 | 17:00 – 18:30 (IST)

Time (IST)	Sessions	Presenters	
17:00-17:05	Welcome address	GSCoE, BMGF and CWAS	
17:05-17:10	Why is ISO 31800 needed?	Mr. Sun Kim ISO PC 305 Chair Non Sewered Sanitation (NSS) Standards and Compliance	
17:10– 17:40	Scope and technical requirements of ISO 31800 and ISO 31800 certification process	Mr. Chris Chan Manager, Projects TUV SUD	
17:40 – 17:55	Potential application of ISO 31800: Combustion and pyrolysis example	Mr. Mansour Fall PMP -Liaison officer at FSMA	
17:55 – 18:10	Potential application of ISO 31800: Supercritical water oxidation FSTU by 374Water		
18:10 – 18:15	Status of adoption of ISO 31800	Mr. Sun Kim ISO PC 305 Chair Non Sewered Sanitation (NSS) Standards and Compliance	
18:15 – 18:25	Q&A		
18:25 – 18:30	Closing remarks for ISO webinar series	GSCoE, BMGF and CWAS	

Session Moderator

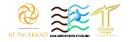
Chief Technical Officer Global Sanitation Center of Excellence IIT Palakkad

Mr. Chris Chan

Manager, Projects TÜV SÜD

Prof. Marc Deshusses

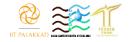
Professor, Civil and Environmental Engineering and Global Health, Duke Global Health Institute



PMP -Liaison officer at FSMA

Mr. Sun Kim

ISO PC 305 Chair - Non-Sewered Sanitation (NSS) Standards and Compliance



Introduction to ISO Standards for Non-Sewered Sanitation (NSS)

Session-1 ISO 31800:2020 Faecal Sludge Treatment Units

ISO STANDARDS FOR NON-SEWERED SANITATION (NSS)

ISO 31800:2020 Faecal Sludge Treatment Units

Sun Kim

ISO PC 305 Chair ISO PC 318 Chair (former) SGK Consulting 4 April 2024

The Sanitation Crisis

- 2.2 billion people lack safely managed services for water*
- **3.5 billion** people lack safely managed sanitation*
- 419 million people still open defecate*
- Diarrheal disease kills >400,000 children under the age of 5, every year

Women and Girls

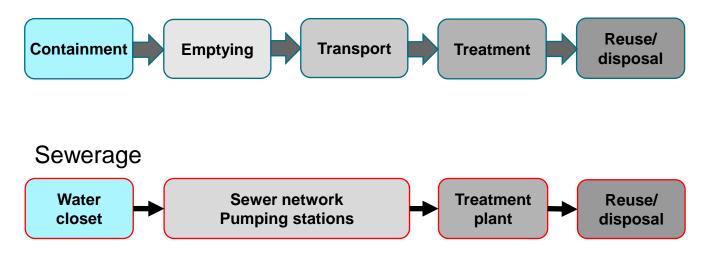
- Imprisonment by daylight
 - The only time available to defecate maybe after dark.

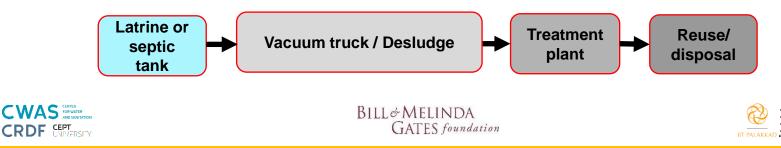
Reduced school enrollment and attendance

- The lack of safe, separate and private sanitation and washing facilities particularly during menstruation.
- Burden of caring for the sick
 - Caring for the sick adds to their already heavy workload.

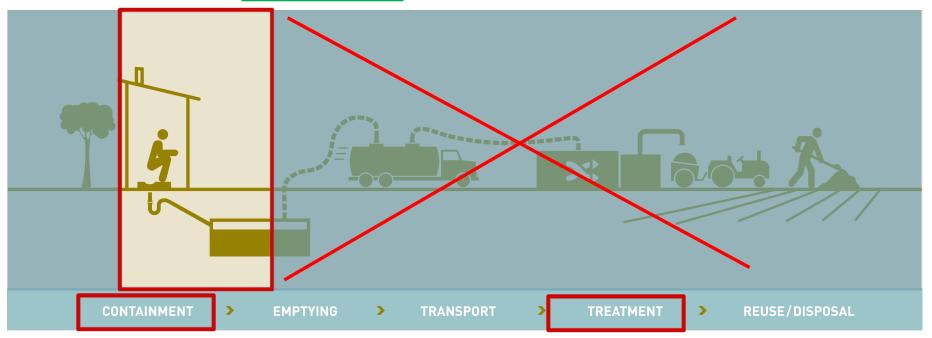
Impact on pregnant women

• About 44 million pregnant women have sanitationrelated hookworm infections that pose a considerable health burden in developing societies.


* WHO & UNICEF Joint Monitoring Programme (JMP) "Progress on household drinking water, sanitation and hygiene | 2000-2022: special focus on gender (2023)



Sanitation Service Chain



Fecal Sludge Management for non-sewered systems

ISO Standards – FSM Overlay

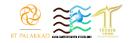
CWAS FOR WATER AND SANITATION CRDF CEPT UNIVERSITY

ISO 31800 Key Aspects

- FSTU as a key part of a FSTP
 - **Design, performance, & test requirements**
 - Technology-neutral
 - Dry Combustion (Engr. Mansour Fall)
 - Pyrolysis (Engr. Mansour Fall)
 - Supercritical Water Oxidation (Prof. Marc Deshusses)
 - Mechanical Vapor Recompression (sedron.com/varcor)
 - Focused on faecal sludge treatment
 - but may include other materials
 - Can be energy neutral or positive for inputs defined by manufacturer
 - Treatment for human health and safety
 - pathogens, pollutants, emissions, etc...
 - Limit odor & noise
 - Since many of the ISO 31800 requirements are more stringent than most local and national requirements, those products meeting the standard will generally comply

New Non-Sewered Sanitation Industry

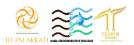
THANK YOU


Introduction to ISO Standards for Non-Sewered Sanitation (NSS)

Session-2 Introduction to ISO 31800 – Faecal sludge treatment units –

Energy independent, prefabricated, community-scale, resource recovery units – Safety and performance requirements

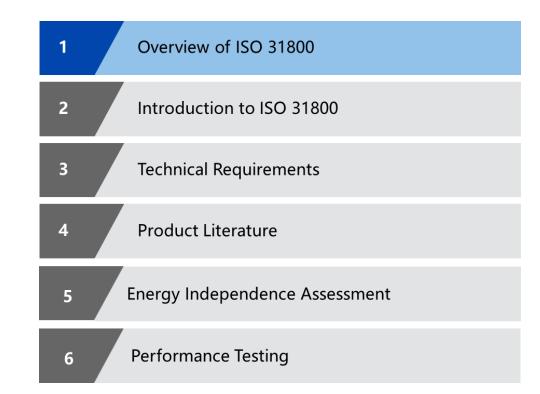
ISO STANDARDS FOR NON-SEWERED SANITATION (NSS)


Introduction to ISO 31800 –

Faecal sludge treatment units – Energy independent, prefabricated, communityscale, resource recovery units – Safety and performance requirements

Chris Chan

Manager, Projects Corporate Sustainabilty Office TÜV SÜD

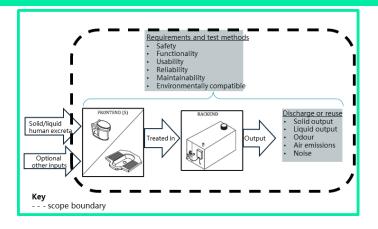


Contents

Overview of ISO 31800

Comparisons between ISO 30500 and ISO 31800

(1) Scope 30500

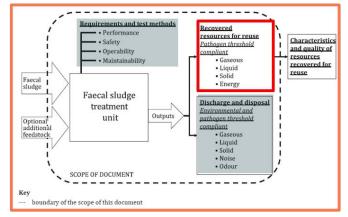

(2) Scope 31800

Scope: general safety and performance requirements for design and testing as well as sustainability considerations for Non-Sewered Sanitation Systems (NSSSs)

- User interface + treatment unit
- Household-scale

CWAS FOR WATER

- No connection to sewer or electrical grid
- Output is safely disposed or reused
- 32 days of lab testing + 5 months of field testing


CEPT RESEARCH

AND DEVELOPMENT

CEPT

Scope: requirements and test methods to ensure performance, safety, operability and maintainability of community-scale resource recovery Faecal Sludge Treatment Units (FSTUs)

- Treatment unit
- Community-scale
- No connection to sewer or electrical grid
- Output is safely disposed or reused
- Recommended test sequence minimally 6 days

4. General Requirements

SUD

Treatment unit input

- **Primarily treat faecal sludge** from human excreta, with the need for energy independence.
- **Secondary inputs** (e.g.biomass) may be treated, without the need for energy independence.
- Manufacturers shall specify **range of values input** to achieve energy independence [5.2.1] or positive [5.2.2] status.
- Manufacturers shall specify the range of defined input for when treatment unit is in energy independent or positive mode.

5.2.1 Energy independence:

Operate off-grid relying on primarily faecal sludge as a fuel source.

5.2.2 Energy positive:

Energy independent while generating excess electricity for applications beyond the treatment unit.

Table 1 — Example of treatment unit input specifications

Input type	Input parameter	Units	Range of values of parameter (compliant operation, energy independence not required)	Range of values of parameter (energy independent and/ or energy positive for testing)
Faecal sludge	Throughput (dry basis)	kg/h	≤37,5	20,0 to 37,5
	Calorific value	MJ/kg	≥9,0	≥15,0
	Solids content	% solids	≥10,0	≥15,0
	Inorganic content	% mass, dry basis	≤25,0	≤15,0
Other inputs	Throughput (dry basis)	kg/h	≤20,0	
	Calorific value	MJ/kg	≥12,0	
	Solids content	% solids	≥15,0	
	eters and values in <u>Table 1</u> a possible combination of the			ously.

NOTE 3 Other formats for presenting the extended range of input parameters, such as graphs may be used; choice of format is at the discretion of the manufacturer.

Examples of input specifications templates are provided in <u>Annex A</u>.

CEPT RESEARCH AND DEVELOPMENT OUNDATION

4. General Requirements

SUD

Treatment unit input

- Primarily treat faecal sludge from human excreta, with the need for energy independence.
- **Secondary inputs** (e.g.biomass) may be treated, without the need for energy independence.
- Manufacturers shall specify **range of values input** to achieve energy independence [5.2.1] or positive [5.2.2] status.
- Manufacturers shall specify the range of defined input for when treatment unit is in energy independent or positive mode.

5.2.1 Energy independence:

Operate off-grid relying on primarily faecal sludge as a fuel source.

5.2.2 Energy positive:

Energy independent while generating excess electricity for applications beyond the treatment unit.

Table 1 — Example of treatment unit input specifications

Input type	Input parameter	Units	Range of values of parameter (compliant operation, energy independence not required)	Range of values of parameter (energy independent and/ or energy positive for testing)
Faecal sludge	Throughput (dry basis)	kg/h	≤37,5	20,0 to 37,5
	Calorific value	MJ/kg	≥9,0	≥15,0
	Solids content	% solids	≥10,0	≥15,0
	Inorganic content	% mass, dry basis	≤25,0	≤15,0
Other inputs	Throughput (dry basis)	kg/h	≤20,0	
	Calorific value	MJ/kg	≥12,0	
	Solids content	% solids	≥15,0	
	eters and values in <u>Table 1</u> a possible combination of the			ously.

NOTE 3 Other formats for presenting the extended range of input parameters, such as graphs may be used; choice of format is at the discretion of the manufacturer.

Examples of input specifications templates are provided in <u>Annex A</u>.

CEPT RESEARCH AND DEVELOPMENT FOUNDATION

Example of input specification templates

1	
1	
	SUD
	<u> </u>

Parameter		Comments	
Input type: e.g. faecal sludge, urine, biomass			
Origin: e.g. faecal sludge received from non-sewered sanitation service provider; sludge left exposed to air on drying beds for an average of 5 days		[Provide as much detail as possible e.g. recommended types of pre-processing required.]	
Throughput (kg/day)		[Provide maximum, minimum, and design values]	
Particle si	ze (mm)	[If diameter and length are not suitable forms	
D _x = L _y =	x = maximum diameter y = maximum length	of measure, other formats may be used and clearly indicated.]	
1	content, <i>M</i> (<i>M</i> %, as received) — ISO 18134-1 or	[Prepare report based on the total mass of the test sample (wet basis).]	
M% =			
Ash content, A (mass %, dry basis) — ISO 18122 A% =		[Provide maximum, minimum, and design throughput]	
Calorific v	alue 0	[Provide maximum, minimum, and design	
	Wh/kg dry basis, or	throughput]	
Energy de	nsity, E		
MJ/m ³ or k	Wh/m³ bulk volume, — ISO 18125		
Bulk dens	ity, BD		
kg/m³ as r	eceived — ISO 17828		
BD =			
Nitrogen,	N (mass %, water free basis) — ISO 16948	[Maximum value should be specified.]	
N% =			
Arsenic, As (mg/kg, dry mass basis)		[Maximum value should be specified.]	
As =		1	
Cadmium,	Cd (mg/kg, dry mass basis)	[Maximum value should be specified.]	
Cd =		7	
Chromium, Cr (mg/kg, dry mass basis)		[Maximum value should be specified.]	
Cr =			

Separate tables for each type of feedstock

A.1 Thermal processes (As shown)

A.2 Biological processes

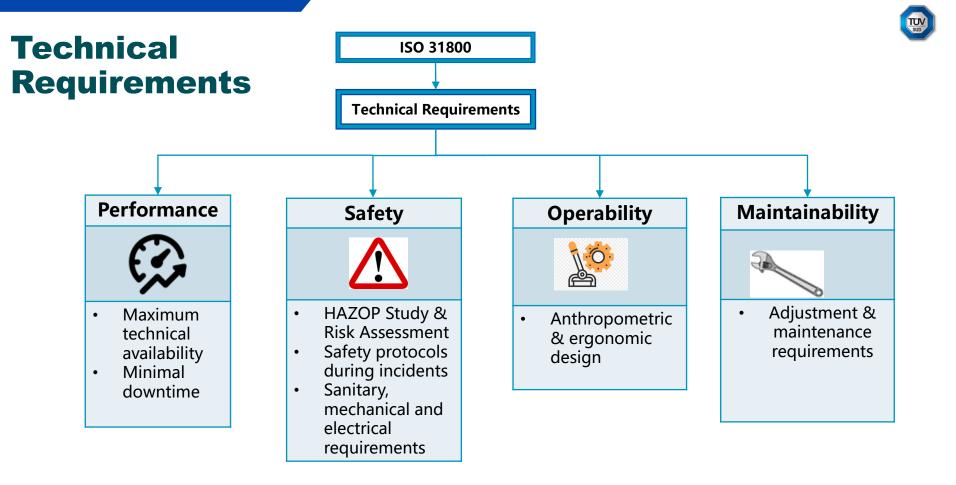
A.3 Trace elements

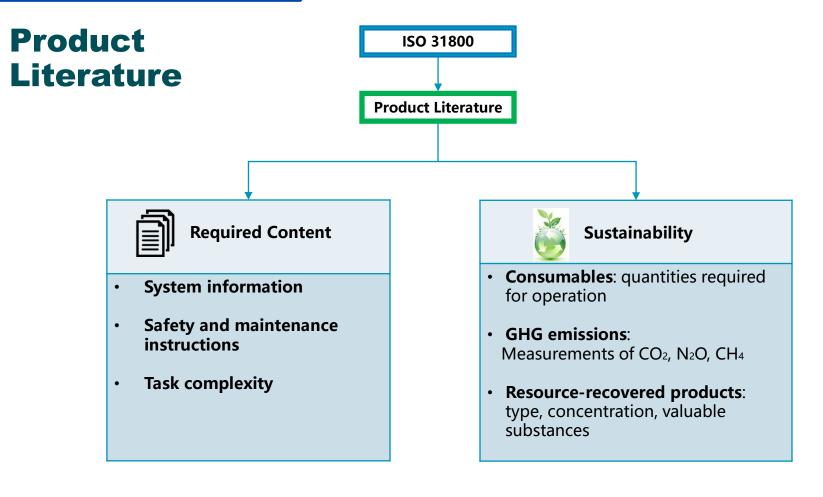
Recommended input parameters with International Standards measurements.

Report and document alternative methods, if used.

Output of mass (composition and amount) of trace elements depends on the input; trace elements may not be fully removed.

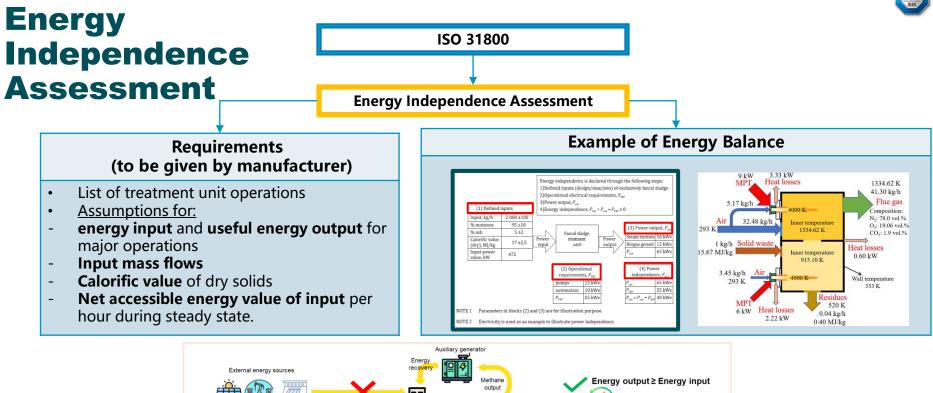
Table A.1 - continued


Parameter	Comments
Copper, Cu (mg/kg, dry mass basis)	[Maximum value should be specified.]
Cu =	
Mercury, Hg (mg/kg, dry mass basis)	[Maximum value should be specified.]
Hg =	
Lead, Pb (mg/kg, dry mass basis)	[Maximum value should be specified.]
Pb =	
Molybdenum, Mo (mg/kg, dry mass basis)	[Maximum value should be specified.]
Mo =	
Nickel, Ni (mg/kg, dry mass basis)	[Maximum value should be specified.]
Ni =	
Selenium, Se (mg/kg, dry mass basis)	[Maximum value should be specified.]
Se =	
Zinc, Zn (mg/kg, dry mass basis)	[Maximum value should be specified.]
Zn =	
Sulphur, S (mass %, water free basis) — ISO 16994	[Maximum value should be specified.]
S% =	
Chloride, Cl (mass %, water free basis) — ISO 16994	[Maximum value should be specified.]
C1% =	
Other: Rheology	


CEPT RESEARCH

AND DEVELOPMENT

CR



CWAS CENTER CRDF CEPT FISSAARCH TORWATER MONOSANTATION CEPT

CWAS CENTER CRUMATER CRUCK AND DEVELOPMENT CONVARIANCE UNIVERSITY

Treatment unit outputs

Treatment unit

Resource recovery

Faecal sludge as primary source

Performance testing

Two test conditions to be tested while operating in energy independent mode:

- Upper throughput limit of defined input range
- Lower throughput limit of defined input range
- Defined input shall not deviate by +/- 5% (operating in upper and lower throughput limit)
- Any preventative maintenance activities and durations shall be accounted for and specified by the manufacturer.
- If maintenance results in downtime, it shall not be part of the entire test duration

Table 11 — Recommended test sequence

Test(s)	Test duration ^c	Remarks
Start-up: Follow start-up procedure according to the manufacturer's instructions	Not applicable	The timeframe depends on the duration of the start- up period required to achieve system operability and stability. This duration shall be specified by the manufacturer.
Solid and effluent	1 day, for 8 h ^a	Refer to 11.5 for details of sampling planning
Air emissions (except dioxins and furans)	1 day, for 8 hª	Refer to $\frac{11.6}{100}$ for air emissions, and $\frac{11.7}{100}$ for odour for details of sampling planning
Odour measurement		
Air emissions — Dioxins and furans	At least 3 days, for 8 h/day ^{a,d}	One sample per day. A total of three are required.
Noise measurements	1 day, for 8 h ^a	Refer to <u>11.8</u> for details of sampling planning Test shall be conducted on a day without other testing activities ^b
	Start-up: Follow start-up procedure according to the manufacturer's instructions Solid and effluent Air emissions (except dioxins and furans) Odour measurement Air emissions — Dioxins and furans	Start-up: Follow start-up procedure according to the manufacturer's instructions Not applicable Solid and effluent 1 day, for 8 h ^a Air emissions (except dioxins and furans) 1 day, for 8 h ^a Odour measurement At least 3 days, for 8 h/day ^{a,d}

o n'excludes time for setting up of equipment, adjustment, calibrat

This is done to have the least disturbance.

If not specified, test may be carried out in parallel with other test(s).

d As concentrations to be measured are very low (>0.18 ng/m³). An accumulation for at least 6 h on the adsorbent is necessary to reach the detection threshold. With the preparation and follow-up time, only one measurement per day is possible.

Performance ISO 31800 Testing Performance Testing & Thresholds 3. Air Emissions 1. Human 2. 4. Acoustics 5. Odour Environmental Health CO ٠ A-weighted Includes • ٠ NOx COD Bacteria ٠ ٠ ٠ equivalent human SO₂ Virus BOD ٠ ٠ ٠ sound level assessors Total dust TSS Protozoa • ٠ ٠ **Dioxins and furans** Helminths Total N ٠ ٠ ٠ Total P Arsenic • ٠ Cadmium Temperature ٠ • Transition Mercury ٠ ٠ Metals Oxygen ٠ Moisture content .

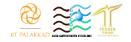
> CRDF CEPT RESEARCH AND DEVELOPMENT CEPT

CWAS

Mehr Wert. Mehr Vertrauen. Add value. Inspire trust.

Thank You

Contact for any enquiries: Chris.chan@tuvsud.com



Introduction to ISO Standards for Non-Sewered Sanitation (NSS)

Session-3 Potential application of ISO 31800: Combustion & Pyrolysis example

ISO STANDARDS FOR NON-SEWERED SANITATION (NSS)

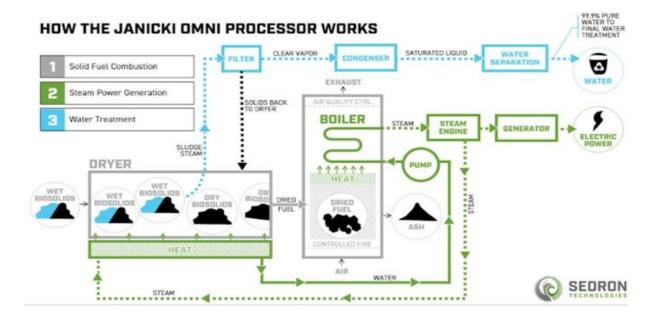
Potential application of ISO 31800: Combustion & **Pyrolysis example**

Mansour Fall

Expert Eng Independent consultant of BMGF

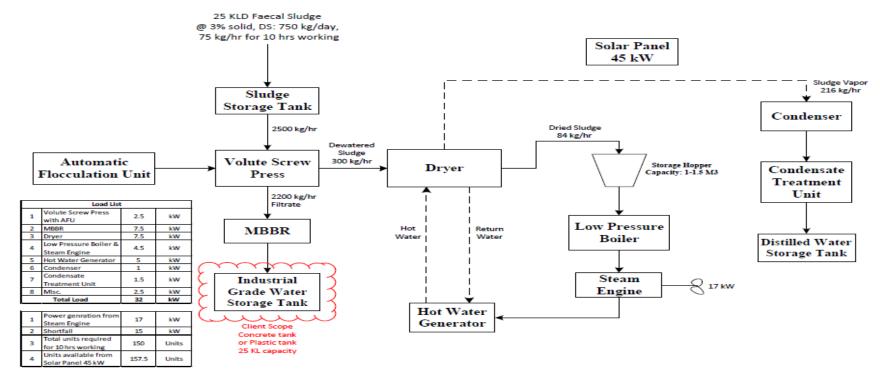
OMNIPROCESSOR CONCEPT

An industrial unit that process the sludge thermally to kill pathogen while reducing the volume and generate some bioproduct.



Combustion OP C-OP

What is combustion


A combustion reaction is usually a reaction that produces fire. Combustion takes place at an elevated temperature. It is a heat releasing (exothermic), redox chemical reaction that usually occurs between a fuel and oxidizing agent (mostly oxygen of the atmosphere).

2nd generation Op

Note:

1. Start-up power through DG Set/Battery Bank

2. Minimum required dry basis CV of sludge = 14 MJ/kg

3. Space required = 850 M2

3rd generation OP

7 liter/s 0.4 liter/s 0.1 liter/s 0.07 liter/s sludge sludge sludge sludge ECO Screw Electro J-OP Filtratn Osmosis press ash water water 0.5 % 8 % 50 % 30 % solids solids solids solids water Non-combustible debris CWAS CONTER BILL& MELINDA GATES foundation CRDF CEPT

Electricity output

3rd Generation C-OP

PYROLYSE OP

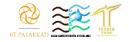
What is Pyrolysis ? It is the heating of an organic material, such as <u>biomass</u>, in the absence of oxygen. Biomass pyrolysis is usually conducted at or above 500 °C

J-Omiprocessor installed in Dakar Senegal

Pavers block

Fertilizer

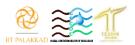
THANK YOU



Introduction to ISO Standards for Non-Sewered Sanitation (NSS)

Session-4 Potential Application of ISO 31800: Supercritical Water Oxidation by 374Water

ISO STANDARDS FOR NON-SEWERED SANITATION (NSS)

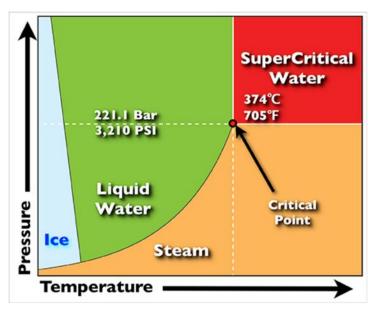

Potential Application of ISO 31800: **Supercritical Water Oxidation by** 374Water

Marc Deshusses, Ph.D.

Duke University & 374Water Inc.

CWAS CALLER BILL & MELINDA GATES foundation

Evolution timeline


Shifting the waste paradigm

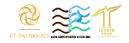

This barrel is an **87 kWh** worth of dump!

The same energy as in 10 L of gasoline

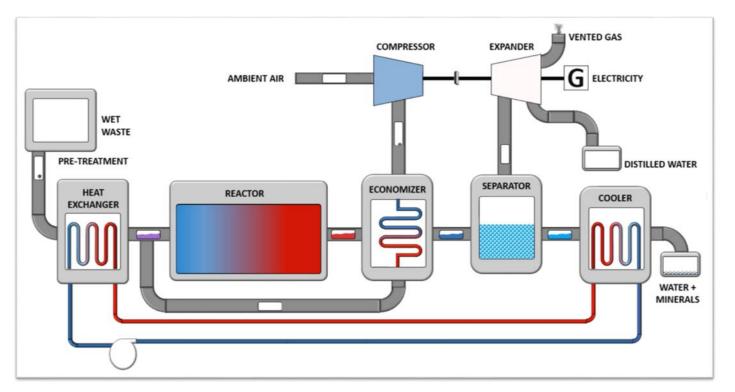
_{or a} Tesla battery pack

What is SCWO ?

SCWO converts organic waste into clean water, heat, electricity and CO₂ in seconds!


SCWO is a transformative technology

- Process is compact and scalable
- Treat waste at the source eliminating transportation and greenhouse gases
- Recover and reuse water, energy and nutrients
- Decentralized, prefabricated, compact and modular units
- Energy efficient, sustainable and resilient



Duke pilot SCWO system

How AirSCWO[™] works

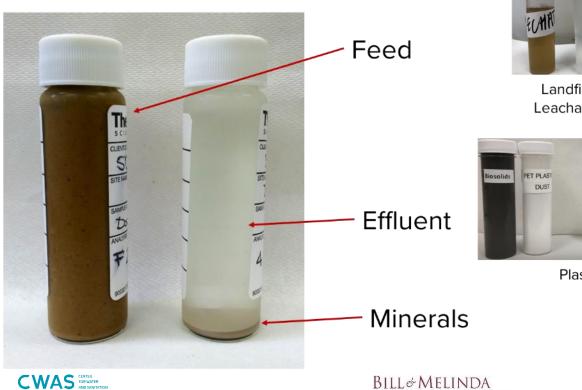
©2023 374Water Inc.

Wastes treated so far ...

Stockpile AFFF

AFFF rinsate

Microplastics


... and the list goes on

- Pharmaceuticals
- Chemical wastes (F, Br, Cl)
- Ag waste/fermentation waste
- Waste cooking or motor oil
- FOG (fat, oil and grease)
- GAC
- Spent IX resin

It always comes out the same...

CRDF CEPT

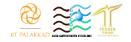
Landfill Leachate

Plastic

GATES foundation

Primary Sludge

Biosolids


Food Waste

Typical performance for biosolids and wastewater sludges

Parameter	Influent	Effluent
COD (mg/L)	160,000 - 220,000	50-200
VSS	10-18%	<1%
Total N (mgN/L)	2000-15,000	20-500
NH ₃ (mgN/L)	300-600	5-100
NO ₂ - (mgN/L)	0-20	<5
NO ₃ - (mgN/L)	100-300	<10
PO4 ³⁻	2000-6000	20-150
рН	6-8	6-7
Conductivity (µS/cm)	3000-5000 100-300	

Treatment of micro-pollutants

Experimental Approach

• Spiked contaminants in IPA/water and in biosolids

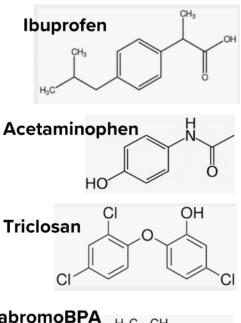
Results

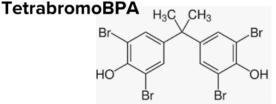
- Ibuprofen and acetaminophen: spiked 10 mg/L each
 Effluent: ND at < 1 μg/L
 Elimination > 99.99%
- Triclosan: spiked: 100 μg/L

Effluent: ND at < $0.1 \mu g/L$

• Tetrabromobisphenol A: spiked: 13 g/L

Effluent: ND at < 1 mg/L


Elimination > 99.99%


BILL& MELINDA

GATES foundation

Elimination > 99.9%

Energy Balances (Projections)

(2024)

10 kW 240 kWh/day

> <u>Heat</u>: 2.4 MWh(thermal)/day

AirSCWO 30

(2025)

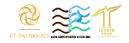
30 wet ton/day

<u>Electricity</u>: 12.5 kW 300 kWh/day

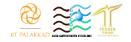
<u>Heat</u>: 12 MWh(thermal)/day AirSCWO 200 (tbd) 200 wet ton/day

> <u>Electricity</u>: 167 kW 4000 kWh/day

<u>Heat</u>: 80 MWh(thermal)/day



374Water's AirSCWO[™] systems


AirSCWO and ISO 31800

Criterion	Threshold or Requirement	AirSCWO value (preliminary)	Comment
Energy	Operate off-grid	Not met AS 6	Need sludge at 15%
independence	solely on FS	Will be met AS 30	DS
Liquid and solid	See Tables 3 and 6	Will meet all health	T > 500 °C
output, human		criteria	
health			
Solid trace	See Tables 4 and 5	Tbd	Largely input
elements			dependent
BOD	<25 mg/L	ND	
COD	<100 mg/L	50-100 mg/L	
рН	6-9	6-7	
Vent: CO	440 mg/m ³	45 mg/m ³	
Vent: NOx	880 mg/m ³	0.02 mg/m ³	
Vent: SOx	2000 mg/m ³	0.1 mg/m ³	
Odor	Dispersion calc.	Will likely pass	Very low odor

374Water will likely pursue ISO 31800 certification for its AirSCWO systems

Decentralized Sanitation / Mixed-Use Development AirSCWO[™] – Membrane Bioreactor (MBR) Combination for Sewage Treatment Wastewater feed Primary treatment + Treated effluents 1500-2200 m³/d MBR + solids (reuse) thickening + effluent disinfection Solids Kitchen and Energy (heat) slurry organic waste 374WATER[®] Waste Minerals (fertilizer) Feedstock conditioning CO_2 AirSCWO[™] 6 BILL& MELINDA GATES foundation CRDF CEPT

FSM Project in Progress: The Homa Bay Blueprint, Kenya

- Partnered with key organizations, local government, and national university
- Deploy an AirSCWO unit, build data hub
- Determine impact
- Build a pathway to scale

For information, see: https://gpfd.org/

Conclusions

- SCWO is an effective technology for biosolids and fecal sludge management
- All organic contaminants are mineralized and all pathogens are eliminated during treatment
- The process does not require chemicals or consumables
- Resources are recovered
- AirSCWO[™] systems will soon be deployed commercially

Contacts:

Marc Deshusses: <u>md@374water.com</u> Sunny Vishwanathan: <u>sv@374water.com</u>

THANK YOU

